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Abstract We study two due date assignment problems in
various multi-machine scheduling environments. We as-
sume that each job can be assigned an arbitrary non-negative
due date, but longer due dates have higher cost. The first
problem is to minimize a cost function, which includes
earliness, tardiness and due date assignment costs. In the
second problem, we minimize an objective function which
includes the number of tardy jobs and due date assignment
costs. We settle the complexity of many of these problems
by either showing that they are NP-hard or by provid-
ing a polynomial time solution for them. We also include
approximation and non-approximability results for several
parallel-machine problems.

Keywords Multi-machine scheduling - Due date
assignment - Complexity - Approximation
1 Introduction

Meeting due dates has always been one of the most impor-
tant objectives in scheduling and supply chain management.
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Customers demand that suppliers meet contracted delivery
dates or face large penalties. For example, Slotnick and
Sobel (2005) cite contracts from the aerospace industry,
which may impose tardiness penalties as high as one million
dollars per day on subcontractors for aircraft components.
Traditional scheduling models considered due dates as given
by exogenous decisions (see Baker and Scudder 1990 for
a survey). In an integrated system, however, they are de-
termined by taking into account the system’s capacity to
meet the quoted delivery dates. In order to avoid tardiness
penalties, companies are under increasing pressure to quote
attainable delivery dates. At the same time, promising deliv-
ery dates too far into the future may not be acceptable to the
customer or may force a company to offer price discounts
in order to retain the business. Thus, there is an impor-
tant trade-off between assigning relatively short due dates
to customer orders and avoiding tardiness penalties. This is
why an increasingly large number of recent studies viewed
due date assignment as part of the scheduling process, and
showed how the ability to control due dates can be a major
factor in improving system performance.

Early research in the area of due date assignment in
scheduling was due to Seidmann et al. (1981) and Panwalkar
et al. (1982). Panwalkar et al. (1982) studied the constrained
version, where the scheduler must decide on a common due
date for all jobs (this method is usually abbreviated as the
CON due date assignment method), while Seidmann et al.
(1981) dealt with the unrestricted case, where each job can
have a different due date (we will refer to this due date
assignment method as DIF). These two papers started ex-
tensive research in the area of due date assignment, with
most papers focusing on the common due date assignment
problem (e.g., Bagchi et al. 1986a, 1986b; De et al. 1991;
Kahlbacher and Cheng 1993; Cheng and Kovalyov 1996;
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Mosheiov 2001; Birman and Mosheiov 2004). A recent sur-
vey on common due date assignment problems was given by
Gordon et al. (2002).

In this paper we study scheduling problems in a multi-
machine environment, where the due dates are assignable
according to the DIF due date assignment method. As far
as we know, this method was studied only for the single
machine scheduling problem by Seidmann et al. (1981) and
Shabtay and Steiner (2005). We study the problems of mini-
mizing two different objective functions. The first objective
is to minimize the sum of due date assignment, earliness and
tardiness penalties as given by the following objective func-
tion

n
> (emax(0.d; — A) + BE; + v Ti). €))

i=1

where C; is the completion time of job i, E; = max(0, d; —
C;) is the earliness of job i, T; = max(0, C; — d;) is the tar-
diness of job i, A > 0 represents the lead time that customers
consider to be acceptable, and «, 8 and y are non-negative
parameters representing the per unit lead-time, earliness and
tardiness penalties, respectively. There is no lead-time cost
if the due date is set to be less than or equal to A.

Our second objective is to minimize the sum of the due
date assignment costs and the number of tardy jobs given by
the objective function

n

> (emax(0.d; — A) + BU;). )

i=l

where U; is the tardiness indicator variable for job i, i.e.,
Ui=1if C; > d; and U; = 0if C; <d;, and B is the cost of
a tardy job i.

In order to specify each problem, we use the classical
3-field notation introduced in Graham et al. (1979). Since
o, B and y are usually reserved for the cost coefficients in
the due date assignment literature, we use X|Y |Z to refer to
the 3 fields. The X field describes the machine environment:
X € {Pm, Om, Rm, Fm, Jm, Om} for identical parallel, uni-
form or unrelated machines, flow shops, job shops or open
shops, respectively.

The Y field exhibits the job-processing characteristics
and constraints and may contain no entry, a single entry,
or multiple entries. For example, if DIF or CON appear in
the Y field, this means that the due dates are assignable ac-
cording to the DIF or CON due date assignment method,
respectively. We denote the processing time of job i by p;.
In the case of uniform and unrelated machines the actual
processing time of job i on machine j is p;/s ;j and p; /s;;,
respectively, where s; and s;; denote the speed of machine
Jj in the respective cases. For the complexity analysis, we
assume, without loss of generality, that all job-related data,
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i.e., processing times, lead times and due dates are non-
negative integers.

The Z field contains the objective function for the
scheduling problem, and in this paper, it will usually refer
to one of the two objective functions defined in (1) or (2).

Seidmann et al. (1981) presented an O(nlogn) al-
gorithm to solve the 1|DIF|}";_,(¢max(0,d; — A) +
BE; + yT;) problem. We study the complexity of the
X|DIF| Y (@max(0,d; — A) + BE; + yT;) problems
with X € {Pm, Om, Rm, Fm, Jm, Om}. All these problems
are proven to be NP-hard, but there are several important
special cases, which can be solved in polynomial time. In
particular, we give polynomial time solutions for the case of
no acceptable lead times, i.e., when A = 0, on parallel ma-
chines. For p > 1, an algorithm H is a p-approximation
algorithm for a scheduling problem if, for any instance
of the problem, it is guaranteed to find a schedule whose
cost is at most p times the minimum cost. A family of al-
gorithms {H,} for a problem is called a fully polynomial
time approximation scheme (FPTAS) if, for every & > 0,
H. is a (1 + ¢)-approximation algorithm whose running
time is polynomial in the input size and 1/¢ (Garey and
Johnson 1979). We also study the approximability of the
X|DIF| Y (@ max(0,d; — A) + BE; + yT;) problems for
A > 0 on parallel machines. We show that these problems
cannot have a polynomial time p-approximation algorithm
with p < co unless P = N'P. We also prove that if we mod-
ify the objective by adding an appropriate » > 0 to it, then
there is a polynomial time 2-approximation algorithm for
the Rm|DIF|Y""_, (¢ max(0, d; — A)+ BE; +y T;) +b prob-
lem. A summary of the known and the new results in this
paper is given in Table 1.

Shabtay and Steiner (2005) presented an O (nlogn) opti-
mization algorithm to solve the 1|DIF| >} (@ max (0, d; —
A) + BU;) problem. In this paper we show that for all multi-
machine scheduling environments this problem becomes
NP-hard, but the case of no acceptable lead times (A = 0)
becomes polynomially solvable again on parallel machines.
‘We also present approximation and non-approximability re-
sults for these problems when A > 0. A summary of the
results is again contained in Table 1.

The paper is organized as follows. In Sect. 2 we prove
that the X|DIF| )", (@ max(0, d; — A)+ BE; +y T;) prob-
lem is A/P-hard for all multi-machine scheduling environ-
ments. While it is strongly N'P-hard for X = Fm, X =Jm
and X = Om, we provide a pseudo-polynomial algorithm
to solve the problem on identical and uniform parallel ma-
chines with a fixed number of machines. We also prove
that with A = O the problem has a polynomial time so-
Iution on parallel machines. This is followed by our non-
approximability results for the A > 0 case and approxi-
mation algorithms for a modified objective. In Sect. 3 we
present similar results for the X|DIF| Zl'-’zl (amax(0, d; —
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Table 1 Summary of results

Problem

Complexity

Reference

1DIF| Y ! (e max(0,d; — A) + BE; + yT})
Pm|DIF|Y"}_ (¢ max(0,d; — A) + BE; +yT;)
Om|DIF|Y"_ (amax(0,d; — A) + BE; + yT;)
Rm|DIF| Y} (¢ max(0,d; — A) + BE; + yT;)
Pm|DIF| Y !_,(ad; + BEi + v Ti)

Pm|CON|Y 7 (ad; + BE; + v T;)

Rm|DIF| Y _ (ad; + BE; +yT;)
Fm|DIF|Y_!_(ad; + BE; + v T;)

Om|DIF| Y }_ (ad; + BE; + yT;)

Pm|DIF| Y ! (@ max(0,d; — A) + BE; + yT;)

Rm|DIF| Y (@max(0,d; — A) + BE; + yT;) + wA

1DIF| Y"1 (amax(0,d; — A) + BU;)
Pm|DIF| "} (@ max(0, d; — A) + BU;)
Om|DIF| :-1:1(01 max(0,d; — A) + BU;)
Rm|DIF|>"!_ (@ max(0, d; — A) + BU;)
Pm|DIF| Y"!_, (ad; + BU;)

Pm|CON| Y, (ad; + BU;)

Rm|DIF| "}, (ad; + BU;)
Fm|DIF|Y"}_, (ad; + BU;)
Om|DIF|Y_!_, (ad; + BU;)
Pm|DIF|Y"}_ (¢ max(0, d; — A) + BU;)
Rm|DIF| Y} (@ max(0,d; — A) + BU; + ¢ A)

O(nlogn)
NP-hard in the ordinary sense

NP-hard in the ordinary sense

(Seidmann et al. 1981)

Theorem 1 and Sect. 2.2

Theorem 1 and Sect. 2.2

NP-hard Theorem 1

O(nlogn) Corollary 3

NP-hard (Cheng and Chen 1994; De et al. 1994)
o) Corollary 3

Strongly N'P-hard Theorem 1

Strongly A'P-hard Theorem 1

no p-approx. with p < oo Theorem 2

2-approx. Corollary 2

O(nlogn) (Shabtay and Steiner 2005)

NP-hard in the ordinary sense

NP-hard in the ordinary sense

Theorem 5 and Sect. 3.2

Theorem 5 and Sect. 3.2

NP-hard Theorem 5

O(nlogn) Corollary 6

NP-hard (Kahlbacher and Cheng 1993)
O (n"+3) Theorem 10

Strongly N'P-hard Theorem 5

Strongly N'P-hard Theorem 5

no p-approx. with p < oo Theorem 6

2-approx. Corollary 5

A) + BU;) problem following the same outline. A conclud-
ing summary is given in the last section.

2 The X|DIF|Y"!_, (¢ max(0,d; — A) + BE; + yT;)
problem

In this section we analyze the X|DIF| Z,'.’zl (amax(0,d; —
A) + BE; + yT;) problem for X € {Pm,(QOm,Rm, Fm,
Jm, Om}. For given predefined due dates, the problem is
N'P-hard even in the single-machine case with 8 = 0, as
it becomes the well-known 1|| Y 7; problem (see Du and
Leung 1990).

2.1 Analysis and complexity

For any given schedule, which fixes the set of comple-
tion times C = (Cy,C2,...,C,), each of the problems

X|DIF| Y} (@max(0,d; — A) + BE; + yT;) is reduced
to a pure due date assignment problem, that is, the de-
termination of the set of due dates, d = (di,d>, ..., d,),
which minimizes the objective given by (1) with every other
variable fixed. It is easy to see from (1) that this due date as-
signment problem has a separable objective function. Thus,
we can determine the optimal due date for job i by deter-
mining d; that minimizes the following objective for i =

1,...,n:

Zi(d;) =amax(0,d; — A) + Bmax(0,d; — C;)
+ y max(0, C; — d;). 3)

This due date assignment problem was analyzed by Shab-
tay and Steiner (2005) in the single-machine case. However,
if the completion times are fixed, the problem no longer
depends on the machine environment. Thus, the same ar-
guments can be used as in the single-machine case, and,
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therefore, we present the results of this analysis in the fol-
lowing lemma without a proof.

Lemma 1 For any of the multi-machine scheduling prob-
lems X|DIF|Y 7 _,(@max(0,d; — A) + BE; + yT;) with a
fixed set of completion times C = (Cy, Ca, ..., Cy), the op-
timal due date assignment policy d* = (df,...,d}) is as
follows: If C; < A then set d = C;; otherwise, ifa <y then
setd’ =C;, and ifa > y then set d} = A.

By Lemma 1, under an optimal due date assignment
strategy, we have Z; = 0 for any job i with C; < A, and
Zi =w x (C; — A) for any job i with C; > A, where
w = min(c, ). Therefore, under an optimal due date as-
signment strategy, (1) becomes

Z(C,d") =w Zmax(O, C; — A). )

i=l

Theorem 1 The X|DIF|Y ! (e max(0,d; — A) + BE; +
yT;) problem is equivalent to a corresponding X|d; =
A|Y ! T; problem with fixed common due date A for
X € {Pm, Qm, Rm, Fm, Jm, Om}. Furthermore, the X|DIF|
Yo (emax(0,d; — A) + BE; + y T;) problem is N'P-hard
for X € {Pm, Qm, Rm}. The problem is strongly N'P-hard
for X € {Fm, Jm, Om} even when A =0.

Proof 1Tt is easy to see that the objective function in (4) has
the format of a sum-of-tardiness objective with given com-
mon due date A. Therefore, under an optimal due date as-
signment strategy the problem X |DIF| Y, (@ max(0, d; —
A) 4+ BE; + yT;) is equivalent to the corresponding X |d; =
A|Y"!_| T; problem with implied non-assignable common
due date d; = A for i = 1,...,n. Therefore, in order to
prove that X|DIF|) " (e max(0,d; — A) + BE; + yT;)
is N"P-hard it is sufficient to show that the corresponding
X|d; = A|Y_!_, T; problem is N'P-hard.

The Pm|d; = A|Y_;_, T; problem is known to be N'P-
hard for m = 2, since the problem of finding a schedule
with value "7, T; = 0 for the instance where A =1/2 x
Y i_y pi is equivalent to the N’P-hard problem MUL-
TIPROCESSOR SCHEDULING (see Garey and Johnson
1979). Since Pm|d; = A| Z?:] T; is a special case of the
Om|d; = A|Y_;_, T; and the Rm|d; = A|>_]_, T; prob-
lems, it is straightforward to see that the last two are
also N'P-hard. For A =0, the X|d; =0|)_/_, T; problem
is equivalent to a X||Y_7_, C; problem. This problem is
known to be strongly N"P-hard for X = F2 and X = J2
(see Garey et al. 1976) and also for X = O2 (see Achugbue
and Chin 1982). O
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2.2 Pseudo-polynomial algorithms for identical and
uniform parallel machines

The following lemma gives a useful property of an optimal
schedule for parallel-machine scheduling problems.

Lemma 2 There exists an optimal schedule for Rm|DIF|
Yo (@max(0,d; — A)+ BE; + yT;), in which the jobs are
sequenced according to the shortest processing time (SPT)
rule on each machine.

Proof Any given job assignment to machines defines the
actual job processing times. Thus, our scheduling prob-
lem Rm|DIF| )"}, (@ max(0, d; — A) + BE; + yT;), under
an optimal due date assignment strategy and fixed job-
to-machine assignment, reduces to m unrelated 1|d; =
AlY ! | T; problems, i.e., we have to solve m unrelated
single-machine problems with a common non-assignable
due date A to minimize the total tardiness. It is well-known
that 1|d; = A| Y/, T; is minimized by sequencing the jobs
in a non-decreasing order of processing times, i.e., accord-
ing to the SPT rule. (|

Rothkopf (1966) and Lawler and Moore (1969) have
suggested a general dynamic programming optimization al-
gorithm for a fixed number of machines, which is applicable
to special cases of Rm|| ), fi, where f; is a regular (non-
decreasing) criterion for i = 1,...,n and it is possible to
index the jobs in such a way that the jobs assigned to a given
machine can be assumed to be processed in order of their in-
dices. The algorithm can be described as follows.

Given an appropriate indexing i = 1,...,n of the jobs,
define F;(ty,...,t;) as the minimum cost of a schedule for
jobs Ji, ..., Ji subject to the constraint that the last job on
M is completed at time ¢; for j =1,...,m. Then for the
Y i_, fi criteria, we have

Fi(tla"'vtm)
=minj_i  a{Fi1(ti.....tj = pij. ..o tm) + [it) )

Q)
the initial conditions are

0, iftj=0forj=1,...,m
Fo(tlsstm): s (6)

00, otherwise
and the optimal solution value is given by
Fy =min(Fy(11,...,tm) |0<1; <C), )

where C is an upper bound on the completion time of any
job in an optimal schedule. In general, these equations can
be solved in O (mnC™) time, but if the machines are uni-
form, only m — 1 of the 7, ..., 1, values are independent.
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This means that for uniform machines, the time complexity
reduces to O (mnC™ 1.

We will show that a variant of the above optimization
algorithm solves the Qm|d; = A|Y_7_, T; and the Pm|d; =
A[Y"!'_| T; problems that our Om|DIF| Y ""_, (¢ max(0, d; —
A) + BE; + yT;) and Pm|DIF| Y} _ (¢ max(0,d; — A) +
BE; + yT;) problems are equivalent to, respectively. First
we have to note that ) _*_, 7 is a regular criterion. In addi-
tion, we know that there exists an optimal schedule where
the jobs on each machine are in SPT order according to
Lemma 2. It is easy to see that for identical or uniform paral-
lel machines, the SPT order of the jobs is the same no matter
which machine we consider. (Note, however, that this is not
necessarily the case for the Rm|d; = A| Z?:l T; problem.)
Therefore, the SPT order can serve as the common index-
ing of the jobs required by the above dynamic programming
algorithm. We can apply (5-7) with

£(t) 0, ift; <A
. t — s
Y tj—A, iftj>A
fori=1,...,nand j=1,...,m. 8)
It is clear that C = max;—;, ,,,(517 x Y iy pi) will be

an upper bound on the completion time of any job in the
case of uniform machines. The upper bound reduces to
C =)"}_, pi for identical parallel machines. Thus, we have
proved the following corollary.

Corollary 1 There is a pseudo-polynomial time algorithm
that solves the Pm|DIF|)_;_ (e max(0,d; — A) + BE; +
yTi) and Qm|DIF|Y"!_ (¢ max(0,d; — A) + BE; + yT;)
problems in

o((E0) )

and

| n m—1
0 _ .

time, respectively.

2.3 Approximability and approximation on parallel
machines

In light of Corollary 1, it is natural to ask whether there
exists an FPTAS for the above two problems. As the fol-
lowing theorem shows, however, even the existence of a
constant-factor, polynomial time approximation algorithm is
extremely unlikely.

Theorem 2 There is no polynomial time p-approximation
algorithm for the problem Pm|DIF|Y 7_, (¢ max(0,d; —
A) + BE; + yT;) with p < 00, unless P = NP.

Proof Kovalyov and Werner (2002) have shown recently
that the existence of a polynomial time p-approximation
algorithm for Pm|d; = A|Y_;_, T; would imply the poly-
nomial solvability of the problem MULTIPROCESSOR
SCHEDULING (Garey and Johnson 1979). Thus, assuming
P # NP, no such algorithm can exist. The same statement
then follows for Pm|DIF|Y"}_ (e« max(0,d; — A) + BE; +
yT;) from its equivalence to Pm|d; = A| Z:’z 1 T, which
was proved in Theorem 1. (|

Since the Pm|DIF| Y _7_ (¢ max(0, d; — A)+ BE; +y T;)
problem is a special case of the Qm|DIF| )"}, (e max(0,
d;i — A) + BE; + yT;) and Rm|DIF|}"}_, (e max(0, d; —
A) + BE; + yT;) problems, the above result holds for uni-
form or unrelated machines, too. One reason the problems
are difficult to approximate is that the optimal objective
value for an instance may be zero and any algorithm with
a guaranteed approximation ratio would have to be opti-
mal for such instances. Furthermore, answering the question
whether an instance has a schedule with zero tardiness on
parallel machines is NP-hard itself. This provides the moti-
vation for an equivalent formulation of the problem, which
has no solution with zero value. This can be done by adding
some positive b > 0 to the objective function. Although ap-
proximating such a version of the problem may be somewhat
easier, the next result shows that even this version is unlikely
to have an FPTAS.

Theorem 3 There is no polynomial time e-approximation
algorithm for the problem Pm|DIF|Y 7_, (¢ max(0,d; —
A)+ BE; +yT;) +bwithe < 1/b, unless P=NP.

Proof Kovalyov and Werner (2002) have also shown that
the existence of a polynomial time e-approximation algo-
rithm for Pm|d; = A|Y_}_, T; + b with & < 1/b would also
imply the polynomial solvability of the problem MULTI-
PROCESSOR SCHEDULING (Garey and Johnson 1979).
The theorem follows then for the problem Pm|DIF)|
Y (@max(0,d; — A) + BE; + yT;) + b from its equiv-
alence to Pm|d; = A|Y_7_, T; + b, which was proved in
Theorem 1. O

Theorem 3 implies that the case, when the additive term
b is some polynomial function of the size of the data, may
be of interest for approximability. Kolliopoulos and Steiner
(2007) have presented an efficient method for obtaining
approximation results for the Y ¢ w;T; + Y ¢_, wid; ob-
jective in various machine environments with given due

@ Springer

www.manaraa.com



222

J Sched (2008) 11: 217-228

dates d;. These approximation results are based on exploit-
ing the close relationship between the ) ', w; (T; +d;) and
the Y7_, w; C; objectives:

Theorem 4 (Kolliopoulos and Steiner 2007) Consider a
member Xo|Yo| Y i, w;iC; of the family of non-preemptive
scheduling problems X |Y|Y_"_, w;C; for which there exists
a p-approximation algorithm. The same algorithm achieves
a (p + 1)-approximation for the Xo|Yo| Y i_; wi(T; + d;)
problem.

Corollary 2 There is a 2-approximation algorithm with
O (n?) time complexity for the Rm|DIF)| Yo (e max(0, d; —
A)+ BE; + yT; + wA) problem.

Proof 1t is well-known (see Horn 1973 and Bruno et al.
1974) that the Rm||w )_7_, C; problem can be solved to op-
timum in O (n?) time. According to the above theorem, the
optimal schedule for the Rm||w Y "7_, C; problem provides
a 2-approximation for the Rm||w Y}, (T; + wA) problem,
which is equivalent to the problem Rm|DIF| Y "!_ (e max(0,
di — A)+ BE; +yT; +wA) by Theorem 1. O

2.4 Polynomially solvable cases

In the following we briefly discuss special cases of the
X|DIF| Y (@max(0,d; — A) + BE; + yT;) problem
which can be solved in polynomial time.

The first one is the case where X = 1, i.e., the single-
machine problem. For X = 1, Seidmann et al. (1981)
presented an O(nlogn) optimization algorithm to solve
1DIF| Y (e max(0,d; — A) + BE; + yT;).

The second case is when A = 0. This assumption is used
in due date assignment problems with no acceptable lead
time (e.g., Bagchi et al. 1986a, 1986b; Panwalkar and Ra-
jagopalan 1992; Kahlbacher and Cheng 1993; Chen 1996;
Mosheiov 2001; Birman and Mosheiov 2004). This is rea-
sonable when the costumer wants a delivery of an order as
soon as possible and may even agree to pay for speedier de-
livery. When A =0, the X|DIF|}""_ (ad; + BE; + yT;)
problem is equivalent to a corresponding X|d; = 0| 7_, T;
problem by Theorem 1. This latter problem, of course, is
the X|| Y_"_, C; problem. The X|| Y "_, C; problem can be
solved in O(nlogn) time for X = Pm (see Conway et al.
1967) and in O (n?) time for X = Om and X = Rm by solv-
ing a linear assignment problem (see Horn 1973 and Bruno
et al. 1974). Thus, we have the following corollary.

Corollary 3 The X|DIF|Y"}_,(ad; + BE; + yT;) problem
can be solved in O (nlogn) time for X = Pm and in 0 (n?)
time for X = Om and X = Rm.

Remark 1 Note that the Pm|CON|> !, (ad; + BE; +yT;)
problem is A'P-hard (see Cheng and Chen 1994 and De et
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al. 1994). The last corollary demonstrates that it is the com-
mon due date constraint d; =d fori =1, ..., n that makes
that problem hard.

3 The X|DIF|)"}_ (e max(0,d; — A) + BU;) problem

In this section our objective is to analyze the X|DIF|
Yo (@max(0,d; — A) + BU;) problem for X € {Pm, Qm,
Rm, Fm,Jm, Om}. For given exogenous due dates, the
P2||>""_, U; problem is known to be NP-hard since
for m = 2, the problem of finding a schedule with value
>, Ui =0 for the instance where A =1/2 x > I p; is
equivalent to the AN'P-complete problem MULTIPROCES-
SOR SCHEDULING (see Garey and Johnson 1979). The
F2|| 3", U; (and, therefore, also the J2||Y"7_, U;) prob-
lem is strongly N'P-hard even for the case of identical due
dates, i.e., d; =d is fixed for i = 1,...,n (see Lenstra et
al. 1977). We will prove that X|DIF| ) !_, (e max(0, d; —
A) + BU;) is N'P-hard, but it is polynomially solvable in
some important cases. We will also provide approximation
and non-approximability results for the problem on parallel
machines.

3.1 Analysis and complexity

For any given schedule, which fixes the set of completion
times C = (Cy, C, ..., Cy), the problem is reduced to a due
date assignment problem, that is to determine the set of due
dates, d = (dy, d>, ...,d,) which minimizes the objective
given by (2). It is easy to see from (2) that this due date
assignment problem has a separable objective function and
we can determine the optimal due date for job i by finding
d; that minimizes the following objective fori =1,...,n

Zi(d;) =amax(0,d; — A) + BU;. 9)

This due date assignment problem was analyzed by Shab-
tay and Steiner (2005) in the single-machine case. However,
if the completion times are fixed, the problem no longer
depends on the machine environment. Thus, the same ar-
guments can be used as in the single-machine case, and,
therefore, we present the results of this analysis in the fol-
lowing lemma without a proof.

Lemma 3 For any of the multi-machine scheduling prob-
lems X|DIF|Y"!_ (emax(0,d; — A) + BU;) with X €
{Pm, Qm, Rm, Fm, Jm, Om} and a fixed set of completion
times C = (Cy,Ca,...,Cy), the optimal due date assign-

ment policy d* = (df, ..., d)}) is
any value in [C;, A], ifCi<A
di =1 Ci, fA<Ci<A+Bla ¢.
any value in [0, A, ifCi> A+ Bja
fori=1,...,n. (10)
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By Lemma 3, under an optimal due date assignment strat-
egy, we have Z; = 0 for any job i with C; < A; Z; =
a x (C; — A) for any job i with A < C; < A+ B, and
Z; = B for any job i with C; > A+ B /o . The last case is the
only one, where the job will be tardy. As a result, under an
optimal due date assignment strategy, our objective becomes

> f(©C, (11)
i=1
where

L Jaxmax(0,C; — A), if C; <A+ Bl
f(C’)_{,B, ifozA+ﬂ/a}'

(12)

Theorem 5 The X|DIF|Y ;_(amax(0,d; — A) + BU;)
problem is equivalent to a corresponding Xl|d; = Al
o min(aT;, B) problem with fixed common due date
A for X € {Pm,Qm,Rm, Fm,Jm, Om}. Furthermore, the
X|DIF| Y} (@ max(0, di—A) + BU;) problem is N'P-hard
for X € {Pm,QOm,Rm} and it is strongly N'P-hard for
X € {Fm,Jm, Om} even if A =0.

Proof Ttis clear from (10-12) that under an optimal due date
assignment strategy, X |DIF| Y _"_ (e max(0, d; — A) +BU;)
is equivalent to a corresponding X |d; =A| ) _;_, min(aT;, B)
problem with implied common and non-assignable due date
di=Afori=1,...,n. We will refer to this last objective
as the truncated tardiness.

For a given set of completion times C = (Cy, ..., Cy),
define E ={i € JIC; < A+ B/a} as the set of early jobs
and 7 = J\E as the set of tardy jobs, where J ={1,...,n}
is the set of all jobs. Let us consider an instance of the
X|d; = AlY_!_ min(aT;, B) problem with a relatively big
B value such that 8 > o x max C; for any feasible schedule.
(For example, it is sufficient to assume that 8 > e x Y ©_; p;
for X = Pm.) For such an instance, the problem becomes
an X|d; = Ala>";_, T; problem and no job will be tardy.
The Pm|d; = Al ?_, T; problem is known to be NP-
hard for m = 2, since the problem of finding a schedule
with value Y7, 7; = 0 for the instance where A = 1/2 x
>, pi is equivalent to the A"P-complete problem MUL-
TIPROCESSOR SCHEDULING (see Garey and Johnson
1979). Since the Pm|d; = Alay_;_, T; is a special case of
the Om|d; = AleY_?_ T; and Rm|d; = Ala Y, T; prob-
lems, it is straightforward to see that the last two problems
are also A/P-hard.

When A =0, the X|d; =0|)_/_, T; problem is equiva-
lent to a X|| >}, C; problem for any X € {Pm, Qm, Rm,
Fm,Jm, Om}. Furthermore, the X|| Z?:l C; problem is
known to be strongly A"P-hard for X € {F2, J2} (see Garey
et al. 1976) and also for X = O2 (see Achugbue and Chin
1982). g

3.2 A pseudo-polynomial algorithm for identical and
uniform parallel machines

The following lemma gives a useful property of optimal
schedules on parallel machines.

Lemma 4 There exists an optimal schedule for Rm|DIF|
Yo (@max(0,d; — A) + BU;), in which the jobs are se-
quenced according to the SPT rule on each machine.

Proof Any given job assignment to machines also fixes the
actual job processing times. In this case, under an optimal
due date assignment strategy, the problem reduces to m un-
related 1/| Y7, f(C;) problems, where f(C;) is given by
(12). In the following we will show that the SPT rule solves
each of these problems.

Let us consider an optimal schedule S for one of the
1|37, f(C;) problems and assume that S does not fol-
low the SPT order. Then there are two adjacent jobs g and
rin § with p, > p,, and job g is sequenced before job r.
Exchange jobs ¢ and r in the sequence and let the resulting
schedule be S The difference between the objective values
is Z(S) = Z(S) = f(Pa+pg) + f(Pa+pg+pr)— f(Pa+
pr)_f(PA+pr+pq) = f(PA+Pq)—f(PA+Pr),Wh€r€
P4 is the sum of the processing times of the jobs sequenced
before jobs g and r. It is easy to see that this value is not
negative, since p,; > p, and f is a non-decreasing function.
Repeatedly using this exchange argument leads to an opti-
mal SPT schedule on each machine. (|

Next we show that the dynamic programming algorithm
of Rothkopf (1966) and Lawler and Moore (1969) (de-
scribed in Sect. 2.2) can be adapted to solve the Om|d; = A|
> min(aT;, B) problem that our Om|DIF|Y ;| (a x
max(0,d; — A) + BU;) problem is equivalent to by The-
orem 5.

Since Y !, min(aT;, B) is a regular criterion, the first
condition for the optimality of the algorithm is satisfied. In
addition, we know from Lemma 4 that there exists an op-
timal schedule where the jobs are in SPT order on each
machine. The SPT order yields the same job sequence on
every uniform machine. Therefore, it is possible to index the
jobs according to this common SPT order and the jobs as-
signed to a given machine will be processed in order of their
indices. Thus, the optimality conditions of the dynamic pro-
gramming algorithm are satisfied, and we can apply (5-7) to
solve the Om|d; = A|Y_"_, min(aT;, B) problem with

0, ift;j<A
: (13)

fitp) = {min(a x (tj— A). B), iftj>A

For the case of uniform machines, we can use C =

,,,,,, m(sij x Y"1, pi) for an upper bound of job com-
pletion times, and for the case of identical parallel machines,
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we canuse C =Y ¢, p;. Thus, we have proved the follow-
ing corollary.

Corollary 4 There is an algorithm that solves the Qm|DIF|
Y (@max(0,d; — A) + BU;) and Pm|DIF|Y ", (a x
max(0,d; — A) + BU;) problem in

1 n m—1
O(mn(Amax (—x p,-)) )
j=1,...m S ‘
i=1

time, respectively.

3.3 Approximability and approximation on parallel
machines

In this subsection we look at the issues of approximation
for X|DIF|Y"!_ (e max(0, d; — A) + BU;) on parallel ma-
chines.

Theorem 6 There is no polynomial time p-approximation
algorithm for the problem Pm|DIF| Y !_, (¢ max(0, d; —
A) + BU;) with p < oo, unless P = NP.

Proof We have proved in Theorem 5 that Pm|DIF)|

:'1:1(01 max(0,d; — A) + BU;) is equivalent to Pm|d; =
AlY!_ min(aT;, B) with given common due date A. Fur-
thermore, an instance of Pm|d; = A| Z?:l min(aT;, B) with
sufficiently large 8 was shown to be equivalent to Pm|d; =
Ala Y ", T;. The proof then can be completed by the same
argument that was used in the proof of Theorem 2. O

Since Pm|DIF|Y"!_ (e max(0,d; — A) + BU;) is a spe-
cial case of Qm|DIF)| Z,'.’zl(a max(0,d; — A) + BU;) and
Rm|DIF|Y"!_ (e max(0, d; — A) + BU;), the above theorem
implies the non-approximability of these problems, too. The
difficulty may be attributed to the same reasons that we have
discussed in the previous section for the Z = o max(0, d; —
A) + BE; + yT; objective. Thus, we consider the problem
with some b > 0 added to the objective. As the following
theorem shows, in spite of the pseudo-polynomial algorithm
of the preceding subsection, the existence of an FPTAS is
extremely unlikely for Pm|DIF|Y"!_ (e max(0,d; — A) +
BU;) + b too.

Theorem 7 There is no polynomial time e-approximation

algorithm for the problem Pm|DIF | Z?Zl(a max(0, d; —
A) + BU;) + b withe < 1/b, unless P = NP.

@ Springer

Proof The proof is based on the same argument that was
used for proving Theorem 3. O

The theorem implies that it is unlikely that there would be
a polynomial time g-approximation algorithm for Pm|DIF|
Yo (@max(0,d; — A) + BU;) + b if b is bounded by a
polynomial in the length of the problem instance (using bi-
nary encoding), i.e., by a polynomial in , log max p;, log A,
loga, and log B. Thus, the case when the additive term b is
some polynomial function of the size of the data may be
of interest for approximability. In the following we show
that the method of Kolliopoulos and Steiner (2007) can
be extended for approximating the ), (o max(0,d; — A)
+ BU;) + b objective, too. We use the equivalence of
Pm|DIF|Y""_ (e max(0,d; — A) + BU;) + b with Pm|d; =
AlY!_ min(aT;, B) + b proven in Theorem 5 and b =
noaA.

Theorem 8 Consider a member Xo|Yp| Y ;_, min(aC;, B+
aA) of the family of non-preemptive scheduling prob-
lems X|Y|Y !_ min(aC;, B + aA), for which there ex-
ists a p-approximation algorithm. The same algorithm
achieves a (p + 1)-approximation for the Xq|Yy,d; =
AlY ! (min(aT;, B) + aA) problem.

Proof For any schedule o, let £1(o) = {i € J| Ci(0) < A},
So)={ieJ|A<Ci(c) <A+ B/a}and T(o)={i €
JICi(o) > A+ BJa}, where J = {1, ..., n} is the set of all
jobs. For any o, we have the following:

n

> (min(aT;(0). B) + aA)

i=1

= ) @A+ Y aCio)+ ) @A+p) (14

ie€i (o) i€& (o) ie7 (o)

and

Z min(aC; (0), B + aA)

i=1

< Y ad+ Y aCilo)+ Y. @A+p). (19
ie& (o) ie& (o) ieT (o)

Therefore, we have

n

> “min(aCi(0), B+ aA) <Y (min(aT;(0). B) + o A).

i=1 i=1

(16)

Consider now a particular schedule o that achieves a p-
approximation for the objective function ) _;_; min(aC; (o),
B + aA), and let o/ and o be optimal schedules for the
Y min(eCi(o), B + «A) and the Y ¢, (min(aT;, B) +
a A) objectives, respectively. Then
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Z min(aC;(0”), B+ aA)
i=1

<p Zmin(aCi (08), B+aA)

i=1

<p Xn:(min(aCi (07)). B +aA)

i=1

<p Y _(min(aTj(0}). B) +aA) = pOPT, (17)

i=1

where the second inequality follows from the optimality of
o for the >r_ min(exCj, B + aA) objective, the third in-
equality is obtained using (16), and by OPT we denote the
optimum value for the objective function ) i, (min(a7;, B)
+ aA). From (17) we get that

Z min(aCi (o), B+ aA)

i€&r(oP)UT (oP)

< pOPT — Z min(aC;(c”), B + aA), (18)
iEgl(Gp)

and, using (14), we obtain

n

Z(min(aTi (op), ,8) + OlA)

i=1

:ZoeA—}- Z

ieEi(oP) i€&(oP)UT (oP)

< > aA+pOPT
ie& (0’/’)

— Z min(aC;(0”), B+ aA)
i€ (oP)
< (p+ 1OPT. 0

min(aCi(c”), B + aA)

Horn (1973) and Bruno et al. (1974) have solved the
Rm||Y_!_, C; problem by formulating it as a linear as-
signment problem. In the following we show that this ap-
proach can also be extended to any truncated objective
> min(eCy, ) for solving the Rm|| Y ", min(aC;, )
problem in polynomial time. Let us define /; as the (un-
known) number of ‘early’ jobs which contribute «C; < u to
the total cost when assigned to machine j (for j =1,...,m)
in a schedule. We will say that a fixed value /; designates l;

jobs as early.

Lemma 5 Forafixedl1= (1, >, ..., 1), the schedule min-
imizing Y ;_, min(eCy, ) for the Rm|| Y 7_, min(aC;, 1)
problem can be determined by solving a linear assignment
problem, which requires O((nm)3) time.

Proof 1 represents the number of jobs on machine j whose
contribution to the total cost is proportional to their comple-
tion times, i.e., jobs with «C; < . It is easy to see that the
kth job (k <1;) among these will contribute its processing
time p; /s;; to its own completion time and the completion
time of the (/; — k) other jobs immediately following it and
designated as ‘early’. Thus, the cost of assigning job i to the
kth position on machine j can be expressed as

ax(i—k+1)xpi/sii, ifk<l;
Cijk(lj)Z{M & ) X pilsiy ifk>f,-}'
fori,k=1,...,nand j=1,...,m. (19)

Let x;jr =1 if job i is scheduled in the kth position on
machine j and x;jx = 0, otherwise. Then for any fixed
1= (,0,...,1,), our problem can be formulated as fol-
lows

n m

(P1))  minY > " cijilj)xijk,

i=1 j=1k=1

m n
s.t. Zinjkzl, Vi=1,...,n;

=1 k=1
n
qu'kfl, Vi=l....mandk=1,....n;
i—1

Xijjx=0orl, Vik=1,...,nandj=1,...,m.

PI(1) is a linear assignment problem with the n jobs on
one side and the nm potential positions on the other side.
It is well known that such a linear assignment problem can
be solved in O((nm)3) time (see Papadimitriu and Steiglitz
1982). O

The following crucial lemma provides the insight that
validates our assignment-based approach for solving
Rm|| Y min(aCj, w).

Lemma 6 Let I = (I},15,.... 1) be the number of jobs
designated as early in the schedule o (1*) that corresponds to
the optimal solution of the linear assignment problem P1(1*)
with the overall smallest cost when we solve the sequence of
problems P1(1) for every one of the possible O(n™) settings
of 1. Then every job designated as early in o (1*) will be com-
pleted before w jor .

Proof Let us denote by E(o(I*)) the jobs designated as
early, i.e., the first l;f jobs scheduled on machine j by PI(1*)
for j =1,...,m. Suppose that, contrary to the lemma, there
is ajob k € E(o (I*)), which is scheduled on machine j and
has a completion time Cy > u /o, and without loss of gener-
ality, let k be the one with the largest completion time among
the jobs with this property. Then the cost of this job in P1(I*)
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was «Cy > . Consider, however, the minimum cost assign-
ment for PI(1) with 1= G B =L ).
Notice that the assignment which designates exactly the jobs
in E (o (I*))\{k} as early is a feasible solution for P/ (1), and
job k has cost u in this solution, while every other job has
the same cost as in the optimal solution for PI(I*). Thus,
PI(1) has a solution whose cost is strictly less than the opti-
mal cost of P/(I*). This, however, contradicts the definition
of P1(I*). O
Theorem 9 The Rm||) ;_, min(aCj, n) problem can be
solved in O (" 3m?3) time by solving a sequence of linear
assignment problems.

Proof Lemma 6 ensures that all jobs i € E(o(I1*)) will
indeed contribute aC; to the objective in P1(I*). Then
the theorem immediately follows from the preceding two
lemmas, observing that there are at most O(n™) possible
settings for the 1 values. O

Corollary 5 There is an algorithm, which in O(n™+3m?3)
time finds a schedule that is a 2-approximation for Rm|DIF |
Yo (@max(0,d; — A) + BU; + aA).

Proof By Theorem 5, solving the Rm|DIF|Y"!_, (e max(0,
di — A) + BU; + aA) problem is equivalent to solving
Rm|d; = A|Y_;_,(min(«T;, B) + «A). By Theorem 8, any
algorithm that solves Rm|| Y_7_, min(aC;, B + aA) to opti-
mum also yields a schedule for Rm|d; = A| Zl’.’zl (min(xT;,
B) + ¢ A) that is a 2-approximation. Applying Theorem 9

with u = B 4+ oA gives such an algorithm. (I
3.4 Polynomially solvable cases

In the following we discuss special cases of the X|DIF|
> (@max(0,d; — A) + BU;) problem, which can be
solved in polynomial time. The first one is the case where
X =1, ie., the single-machine problem. Shabtay and
Steiner (2005) presented an O(nlogn) optimization algo-
rithm to solve the 1|DIF| >/, (@ max(0,d; — A) + BU;)
problem.

The second case is where A = 0. The correspond-
ing X|DIF|Y ! (ad; + BU;) problem reduces to X||

*_,min(aC;, B), by Theorem 5. This problem is still
strongly N'P-hard for X € {Fm, Jm, Om} for m > 2 (see
Theorem 5). On the other hand, as the next theorem shows,
the Rm|DIF|Y_"_,(ad; + BU;) problem can be solved in
polynomial time.

Theorem 10 There is an algorithm that solves the Rm|DIF)|

Z;’:l (ad; + BU;) problem in O(nm+3) time for a fixed num-
ber of machines m.

@ Springer

Proof We showed in Theorem 9 and Lemma 5 that for a
given 1 the equivalent Rm|| }_/_, min(aC;, B) problem can
be solved in O(n®) time for a fixed m by solving a linear
assignment problem. Since we have no more than O(n™)
different I vectors to consider, the problem can be solved in
O (n*3) time. O

Next we present a polynomial time solution with im-
proved complexity for the Pm|DIF| Y }_, (ad; + BU;) prob-
lem, by again solving the equivalent Pm|| Y_7_, min(aC;, )
problem.

Lemma 7 If Cr > B/a and C, < B/a in an optimal sched-
ule for the Pm||y_*_, min(aC;, B) problem then py < p.

Proof Letus assume that there is an optimal schedule S with
Cy > B/, Cy < B/o and p, > pr. By Lemma 4, we can as-
sume that jobs k and £ are processed on different machines.
Let job & be processed on machine g and job k on machine r.
Interchange the two jobs and let the new schedule be S. Let
A, be the set of jobs processed before job 4 on machine ¢ in
schedule S, A, the set of jobs processed before job k on ma-
chine r, B, the set of jobs processed after job 2 on machine
q and B, the set of jobs processed after k on machine r.

We prove first that the total cost of jobs on machine r
is the same in S and S. Since the job sequence and com-
pletion times for set A, are identical in S and §, the total
costs of this set in the two schedules are the same. Since
C(S) > BJo, we also have Cj,(S) = Ci(S) + pn — pr >
B /o . Therefore, all jobs sequenced after set A, are tardy in
both schedules, and each of those jobs has a cost 8 indepen-
dent of their processing sequence.

We prove next that the total cost of jobs on machine g
in schedule S is less than in schedule S. Since the job se-
quence and completion times for set A4 are identical in §
and S, the total cost of this set is the same in both schedules.
Since C(S) = Ci(S) — pr+ pr < Ci(S) < B , the cost of
job k in schedule S is less than the cost of job h in schedule
S. In addition, it is easy to observe that for any j € B, we
have Cj(g) =C;(S) — pn + pr < C;j(S). Since the cost is
a non-decreasing function of the completion time, the total
cost of set B, under schedule S is not greater than its to-
tal cost under schedule S. Therefore, the total cost for the
jobs scheduled on machine ¢ under schedule S is less than
under schedule S. This contradicts the optimality of S and
completes our proof. O

As a consequence of Lemma 7, we will show that the fol-
lowing algorithm of Conway et al. (1967) that solves the
Pm||Y_"_, C; problem in O(nlogn) time also solves the
Pm||>"7_; min(aC;, B) problem.

Algorithm 1 (Conway et al. 1967) Optimization algorithm
for Pm|| Y}, C;.
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Step 1. Reindex the jobs in a non-decreasing order of
processing times (in SPT order).

Step 2. Assign job i to machine i — [.-| x m for i =
1,...,n.

It is straightforward to show for the schedule produced by
the above algorithm that if C;, < C then pj, < pi.

Lemma 8 Algorithm 1 solves the Pm||Y_;_; min(aC;, B)
problem.

Proof Early jobs, i.e., jobs whose completion time is not
greater than B/, can be scheduled according to Algo-
rithm 1, since for this set the objective becomes to minimize
>'_, Ci. Since all tardy jobs have the same cost B, the
sequence and machine assignment within this set is im-
material, i.e., they can also be sequenced according to
Algorithm 1. The proof is completed by the result given in
Lemma 7, i.e., that each early job has a processing time not
greater than that of any tardy job. g

Corollary 6 The Pm|DIF|Y !_,(ad; + BU;) problem can
be solved in O(nlogn) time.

Proof By Theorem 5, the Pm|DIF|}"}_, (aed; + BU;) prob-
lem is equivalent to the Pm||) ;_, min(aC;, B) problem,
and the latter problem can be solved in O(nlogn) time by
Lemma 8. 0

Remark 2 We note that the Pm|CON|Y !_,(ad; + BU;)
problem is N'P-hard (see Kahlbacher and Cheng 1993). The
last corollary demonstrates that it is the common due date
constraint d; =d for i =1, ...,n that makes that problem
hard.

4 Summary

We have studied two multi-machine scheduling problems
with tardiness penalties and due date assignment. In contrast
with most of the literature, we assumed that different due
dates can be assigned to different jobs. We have shown that
both problems are either strongly A/P-hard or A/P-hard in
the ordinary sense, dependent on the machine environment.
We also presented polynomial-time solutions for some im-
portant special cases. Some of these cases demonstrated that
a problem may be AP-hard with common due date assign-
ment, but be polynomially solvable if different individual
due dates are allowed. We have also shown that although
Pm|| Y. (BiE; + y;:T;) and Pm||)Y_ U; are N'P-hard with
given due dates, they become polynomially solvable with
due date assignment with no acceptable lead time (A = 0).
This makes the integration of scheduling and due date as-
signment even more attractive for practical applications.
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